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Abstract

A theory of the symmetric periodic motions (SPMs) of a reversible second-order system is presented which covers both oscillations
and rotations. The structural stability property of the generating autonomous reversible system, which lies in the fact that the presence
or absence of SPMs in a perturbed system is independent of the actual form of the “reversible” perturbations, is established. Both
the case of the generation of SPMs from the family of SPMs of the generating system and birth cycle from the equilibrium state are
investigated. Criteria of Lyapunov stability in a non-degenerate situation are obtained for the SPMs which are generated (in case of
small values of the parameter). A method is proposed for constructing and investigating the Lyapunov stability of all the SPMs. The
conditions for the existence of a cycle (symmetric and asymmetric) in the neighbourhood of a support “almost” resonance SPM
are established for all cases of resonances. The theoretical results are applied to a study of the motion of a particle along a straight
line which passes through the centre of mass of the system perpendicular to the plane of the identical attracting and simultaneously
radiating main bodies (an extension of the Sitnikov problem) in the photogravitational version of the three-body problem. The
circular problem is analysed and two different series of families of SPMs are found in the weakly elliptic problem. The instability
of the equilibrium state is proved in the case of parametric resonance and the stability (and instability) domains are distinguished
for arbitrary values of the eccentricity. All the SPMs with a period of 2� are constructed and the property of Lyapunov stability is
investigated for these motions.
© 2006 Elsevier Ltd. All rights reserved.

The problem of a pendulum with a vibrating suspension point,1 the Sitnikov problem2 and the Beletskii problem,3

where the “naturalness and simplicity of the formulations of the problems are combined with the extraordinary richness
and diversity of their content”,4 primarily belong to the outstanding simplest model problems associated with the
analysis of the structure of the phase space of a dynamic problem. Numerous papers (see the reviews Refs. 5–8,
for example) have been devoted to these problems, the flow of which has not been exhausted, while both the initial
problems as well as their modifications are investigated. Of recent investigations, we mention the papers on pendulum
problems,9–16 the Sitnikov problem17–22 and on the plane motions of a satellite about a centre of mass under the action
of factors of a different nature7,23–29 (see also, the bibliography in the above-mentioned papers).

The model problems are described by a periodic second-order equation, the distinctive property of which is its
invariance under the replacement (of the phase coordinates and time) of (x, x′, t) by (x, −x′, −t) or (−x, x′, −t). Here,
in the problem of a pendulum with a vertically (horizontally) vibrating suspension point and in the Sitnikov problem,
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the equation is invariant under the two transformations simultaneously. It is well known that, in dynamics, reversibility
manifests itself as an invariance under a transformation G, G2 = id (id is the identity transformation), of the phase space
with a simultaneous reversal of the sign of the time.30 In mechanical systems, G is a linear transformation, and these
systems form a class of reversible mechanical systems.31–33

The so-called symmetric periodic motions (SPMs) of the type of oscillations and rotations are systematically
investigated below for a reversible, periodic second-order system, and problems of the existence, construction and
stability of SPMs and the problem of the birth of a cycle near a specified SPM are solved. Results regarding SPMs are
given in the photogravitational version of the Sitnikov problem.

1. Symmetric periodic motions and their stability

Consider the fairly smooth second-order reversible system, 2�-periodic in t

(1.1)

with the fixed set M = {u, v, t : v = 0, sin t = 0}.34 In the case of the functions U and V, which are 2�-periodic in v,
the fixed set will be M∗ = {u, v, t : sin v = 0, sin t = 0}.34

The functions U and V can also satisfy the conditions

System (1.1) then has two fixed sets.
We will call the solution u = �(t), v = �(t) of system (1.1) a 2�k-periodic motion, k ∈ N, if

(1.2)

Note that, in mechanical systems, the solution (1.2) describes both the oscillatory motion (m = 0) and the rotational
motions (m �= 0).34 Here, a rotation can be a forward rotation (m > 0) or a reverse rotation (m < 0). The motion (1.2)
in the problem of the rotation of a satellite in an elliptic orbit (the Beletskii problem3) has been calleda a generalized
periodic solution (also, see Ref. 7).

System (1.1) can contain a parameter �. Suppose that, when � = 0, system (1.1) becomes an autonomous system.
Then, when � �= 0, we obtain the problem of the periodic motions of the reversible system

(1.3)

which is close to an autonomous system.
When � = 0, we have a generating system, and the functions �U1 and �V1 are called perturbations.
In a typical case, the periodic motions of an autonomous system form a family.35 This is the rule36 for motions of

a reversible system which are symmetric with respect to the set M (M* in the case of a system which is 2�-periodic
with respect to v). The corresponding necessary and sufficient conditions for existence of the motions (1.2) in an
autonomous reversible system are well known.34,37

The formulation of the problem of the continuation of periodic motions with respect to a parameter and the method
of solving it belong to Poincaré;38 the method of continuation with respect to a parameter, proposed for the first time
for problems in celestial mechanics,38 was subsequently developed in detail for analytical systems of general form.35

Two cases arise when solving a problem:39 (a) the structurally stable case, when a property of the system of having
periodic motions is solely determined by the generating system (it is called structurally stable in the sense of periodic
motions) and is independent of the actual form of the perturbations, (b) the non-structurally stable case when, to solve
the problem, an examination of the perturbation is necessary.

Undoubtedly, the solution of a problem depends both on the class to which the generating system belongs as well
as the class of the perturbations; these classes are determined by the content of the actual problem.

In a problem concerning the continuation of a 2�k-periodic motion, selected from the family of periodic motions
of an autonomous system, we have the non-structurally stable case as a rule.

a Varin VP. Generalized periodic solutions of the equations of the oscillations of a satellite. Preprint No. 97. Moscow: Inst Prikl. Mat. Ross. Akad.
Nauk; 1997.
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In the simplest Hamiltonian system

(1.4)

the autonomous generating equation z̈ = 0 admits of a family of periodic motions z = c (const). However, when � �= 0,
not any solution of Eq. (1.4) is periodic (for a periodic solution, the right-hand side of Eq. (1.4) must vanish at a
certain instant of time t). Example (1.4) leads to an important conclusion: an autonomous Hamiltonian system is not
structurally stable in the sense of periodic motions when the perturbations preserving the Hamiltonian character of the
system are considered.

Eq. (1.4) is also reversible. Here, the family of periodic motions z = c, ż = 0 belongs to the fixed set M = {z, ż, t :
ż = 0, sin t = 0}. However, not any periodic motion from M is continued with respect to the parameter �. Hence,
reversibility is also not a guarantee of the structural stability of the generating system in the sense of periodic motions
in the class of perturbations which preserve the property of reversibility.

On the other hand, the periodic motions of a reversible system which is close to a conservative system with one degree
of freedom have been studied34 and the structural stability of the generating conservative system in the sense of the
periodic motions in the class of reversible perturbations has been established. The problem of the structural stability of
a reversible autonomous generating system in the general situation was also considered40 and the necessary conditions
for structural stability in the sense of periodic motions were obtained for symmetric motions. For a second-order
system, these conditions turn out to be also sufficient conditions in the general situation.

Note that there is no analogue of the above mentioned assertion in a Hamiltonian system (see example (1.4)) if the
system is not simultaneously reversible with a corresponding fixed set.

The following interesting problem involves an investigation of the stability of the symmetric periodic motions
(SPMs) which are found for small �. According to Poincaré’s theorem,38 when � = 0 one characteristic exponent is
equal to zero. In the case of reversible system (1.3), we obtain two such exponents.41 At the same time, in the case of a
family of SPMs of a generating system, as a rule we have a Jordan cell.40 For small � �= 0, the characteristic exponents
±� are close to zero. Real values of ±� lead to instability by the first approximation.42 Lower-order resonances are
precluded in the case of pure imaginary ±� of small modulus, and Lyapunov stability therefore holds.43

Below, to determine the numbers ±� for small � �= 0, we use a specially constructed approximate solution for a
linear system and the results obtained earlier in Ref. 44.

If the parameter is not explicitly separated out in system (1.1), all the SPMs are found by the method described
earlier in Ref. 34. The stability of the SPMs is then investigated on the basis of the variational equations

(1.5)

In the non-degenerate case, Lyapunov stability follows from the existence of pure imaginary roots if there are
no resonances of up to the fourth order inclusive.43,45 Resonance cases are investigated on the basis of well-known
results.46,47

For the numerical determination of the characteristic exponents of the second-order system (1.5), it is sufficient
to construct just a single solution of Cauchy’s problem with an initial point �u1(0) = 1, �v1(0) = 0 or �u2(0) =
0, �v2(0) = 1 in the period 2�k.44 Then,

(1.6)

Hence, the construction and investigation of the stability property of all the SPMs of reversible system (1.1) consists
of finding all the starting points for the SPMs by the method described previously in Ref. 34, solving Cauchy’s problem
in a period of time t with the now known initial conditions for the combined system consisting of Eqs. (1.1) and (1.5),
and calculating the exponents ±� by formula (1.6).

Note that problems concerning the plane motions of a satellite in an elliptic orbit about a centre of mass have been
investigated using this scheme in Refs. 23–28.

In a situation which is close to a resonance one, cycles occur in the neighbourhood of the SPM. This problem has
been studied recently in the case of an autonomous system of general form.48 The conditions for the birth of a cycle
in the neighbourhood of the SPM of a reversible system are obtained below.
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The investigation of SPM in the Sitnikov problem2 is worthy of special attention. This problem has been studied
in detail in the plan of logically possible situations.20 A photogravitational formulation of the Sitnikov problem is
considered in Section 8 in which all the 2�- periodic SPMs are constructed and their stability is investigated. The
results for the Sitnikov problem follow from this as a special case.

2. A quasi-autonomous system

We precede the proof of the main result for a quasi-autonomous system with a lemma.

Lemma. If a smooth reversible system

(2.1)

allows of a SPM (u(t), v(t)) with period T, which does not coincide with the equilibrium position, and v(0) = 0, then

Proof. The phase portrait of the reversible system (2.1) is symmetrical about the Ou axis and each trajectory inter-
secting this axis is described by an even function u(t) and an odd function v(t) (Fig. 1; a is an oscillation and b is a
rotation). The variational equations are reversible46 in the neighbourhood of such a trajectory and have the solution:
p(t) = u̇(t), q(t) = v̇(t). In the case of a T-periodic motion, the functions p(t), q(t) are T-periodic, where p(t) is an odd
function and q(t) is an even function. Hence,

�

Theorem 1. If the generating autonomous system obtained from system (1.3) when � = 0, possesses a single-parameter
(with respect to the parameter h) symmetric family of periodic motions of period T(h), T(h*) = 2� such that

(2.2)

then, for small � �= 0, system (1.3) has a unique symmetric 2�-periodic motion which is generated from the 2�-
periodic motion of the generating system. The fact of the existence of this motion depends solely on the properties of
the generating system and is independent of the form of the perturbations �U1, �V1.

Proof. Suppose u(�, u0, v0, t), v(�, u0, v0, t) is the solution of system (1.3) with starting point (u0, v0) when t = 0.
The necessary and sufficient condition for the existence of a symmetric 2�-periodic motion has the form.34

(2.3)

(u(0, u0, 0, t), v(0, u0, 0, t) is the symmetric solution of the generating system). �

Suppose � = 0. Eq. (2.3) admits of the solution u0 = u* (const).

Fig. 1.
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The necessary and sufficient conditions for the existence of a symmetric 2�-periodic motion in the case of a generating
autonomous system are written as follows:

(2.4)

Here, by assumption, Eq. (2.4) has a family of solutions u0 = 	(h), � = T(h)/2, that is,

(	(h*) = u*, T(h*) = 2�). Differentiating this relation at the point h = h* and using condition (2.2) and the inequality
∂v(0, u∗, 0, �)/∂t �= 0, in accordance with the lemma we conclude that ∂v(0, u∗, 0, �)/∂u0 �= 0. We now apply the
implicit function theorem to Eq. (2.3): an interval exists containing a zero and the unique continuous function 
(�),
defined in this interval, is such that

Consequently, for small |�| �= 0, a solution of system (1.3), for which u0 = 
(�), exists and has a period 2�.
We now point out an important special case. Suppose a system is close to a conservative system with one degree of

freedom. We consider the equation

(2.5)

Here, Theorem 1 is applicable in two cases

In the case of Eq. (2.5), the result of Theorem 1 has been established earlier in the first case34 and in the second case.40

For rotations in system (2.4), a result has been obtained in the first case34 which also holds when condition (2.2) is
violated.

3. Construction of the symmetric periodic motions (SPMs)

Suppose the generating autonomous system, obtained from system (1.3) when � = 0, allows of a family of SPMs
which depends on the parameter h,

(3.1)

For h = h*, the period of the solution T(h*) is equal to 2�. In the non-degenerate case (condition (2.2) is satisfied when
� �= 0), we represent the 2�-periodic SPM (Theorem 1) as follows:

(3.2)

(�j are even functions and �j are odd functions of t). Then, substituting solution (3.2) into system (1.3) we obtain

(3.3)

The subscripts u, v and � denote a partial derivative with respect to the corresponding variable and a zero subscript
denotes substitution of the quantities 0, � and � into the partial derivatives instead of �, u and v.

According to Theorem 1, each of the systems (3.3) has a unique SPM with period 2�.
System (3.3) has a fundamental solution matrix
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with a determinant

It can be verified that the substitution

(3.4)

(the corresponding even function (�(t)) and odd function (�(t)) have a period 2�) reduces system (3.3) when j = 0 to
the system

In fact, we have

(C0
1 and C0

2 are constants), whence we obtain

(3.5)

Next, taking into account the fact that the functions

have a period equal to 2�, independent of h, we calculate the derivatives

(3.6)

from them. Then, from relations (3.5) and (3.6), we obtain

(3.7)

Finally, for x, we choose (T ′/(2�))C0
2. We then obtain the equation for y by differentiating the equality (3.7).

As a result of the substitution (3.4), system (3.3) takes the form

(3.8)

It is easy to derive the conditions for the existence of a SPM from this

(3.9)

and to find the initial point x(0) for this SPM. The solution is then constructed in an explicit form by taking the
quadrature.

Note that the explicit formulae obtained from relation (3.7) enable one to solve the problem of synthesizing the
SPM constructively.
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4. The stability of symmetric periodic motions (SPMs)

We will now set up the system of variational equations for the SPMs

(4.1)

Here,

The expressions for B+
k (B−

k ) are obtained from the expressions for A−
k (A+

k ) by replacing U by V. The plus (minus)
superscript denotes even (odd) functions and an asterisk indicates that

has been put in the calculated partial derivatives.
We will seek the solution of system (4.1) in the form

(4.2)

We then have the following system of equations for the functions pk(t), qk(t) (k = 0, 1, 2)

(4.3)

where

Systems (4.3) enable us to find successively a solution of the form (4.2) which satisfies the conditions

(4.4)

To do this, using formulae similar to (3.4)

(4.5)

we change from systems (4.3) to the following systems

(4.6)

The transformation inverse to (4.5) then has the form

(4.7)

In formulae (4.3), (4.5)–(4.7), the subscript k takes the values 0, 1 and 2.
We will now show that it follows from formulae (4.5)–(4.7) that zero values of xk and yk correspond to zero values

of pk and qk, and x0(0) = 0, y0(0) = 1 correspond to the values (4.4). We also note that Eq. (4.6) can be integrated in
explicit form in quadratures.
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We will now write out the solutions of systems (4.6)

(4.8)

In the expression for x1, the integrand is an even periodic function and �̇(0) = 0. Hence, representing the functions
by their Fourier series, we evaluate an indefinite integral. We have

(4.9)

(	−(t) is an odd periodic function). Then, for y1, taking account of the oddness of the integrand here, we obtain

(4.10)

(+(t) is an even periodic function).
Formulae (4.7), (4.9) and (4.10) enable us to calculate

(4.11)

Then, in the case when a0 = 0, formulae (4.7), (4.9) and (4.10) give

(4.12)

Substituting expressions (4.12) into the relation (4.8) for x2 and y2 and reasoning in the same way as for x1 and y1, we
obtain

(4.13)

Hence, the calculations give

(the numbers q1(2�) and q2(2�) are defined by formulae (4.11) and (4.13)). It follows from this44 that, when �a∗
0 > 0,

the characteristic exponents ±� will be pure imaginary and, when �a∗
0 < 0, they will be real and of opposite sign. In

the case when a0 = 0, the sign of the number a∗
1 gives pure imaginary (a∗

1 < 0) or real (a∗
1 > 0) exponents �.

For small |�| > 0, the characteristic exponents are also close to zero. Lower-order resonances are not realized in
the system in the case of pure imaginary numbers. This means that the Lyapunov stability of the SPM, the existence
of which was established in Theorem 1, follows from the pure imaginary exponents in the non-degenerate case. Non-
degeneracy implies that the real coefficient C in the normal form, written in the complex-conjugate variables z and z̄,

is equal to zero.

Theorem 2. In the non-degenerate case (C �= 0, a∗
0 �= 0), satisfaction of the inequality �a∗

0 < 0 is a necessary and
sufficient condition for the Lyapunov stability of the SPM (3.2). When a∗

0 = 0, a∗
1 �= 0, C �= 0, the inequality a∗

1 < 0
will be such a condition.
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5. A special case

Suppose U0 = 0 and V0 = u in system (1.3). Then, the system being generated admits of a unique zero equilibrium
state belonging to the fixed set {u, v : v = 0}. For small � �= 0, we have the problem of an SPM in the neighbourhood
of an equilibrium.

Theorem 1 is inapplicable to the system

(5.1)

as the generating system does not allow of the required family. We will write the necessary and sufficient conditions
for the existence of a 2�-periodic, symmetric solution in the form37

(5.2)

When � = 0, equality (5.2) is obtained by integration of the linear system and has the form u0� = 0. Hence, when
� �= 0, Eq. (5.2) always has a unique solution u0 = u0(�). This conclusion is independent of the form of the specific
perturbations U1 and V1.

Hence, in the neighbourhood of the point u = v = 0, the reversible system (5.1) always has a unique SPM39

(5.3)

regardless of the form of the specific perturbations U1 and V1, and the constant u* is determined from the condition
for the function v1(t) : v1(�) = 0 to be periodic.

In the system of variational Eq. (4.1), we have

Hence, system (4.3) is integrated without a preliminary change to the variables xk and yk. We obtain

Now, representing the functions A+
1 (t) and B−

1 (t) by their Fourier series, we will calculate

(5.4)

(	−(t) and +(t) are odd and even periodic functions respectively).
In the case when a0 = 0, the formulae for p2 and q2 are analogous to (5.4). Only, here, the mean value is

Theorem 3. The reversible system (5.1) always has a SPM and, moreover, it is unique. The SPM is stable when
�a0 < 0 and unstable when �a0 > 0. When a0 = 0, the stability property of the SPM is determined by the sign of the
number a1: it is stable when a1 < 0 and unstable when a1 > 0.
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Example. We will consider a special case of a well-known problem, that is, a pendulum with a vibrating suspension
point when there is no gravitational force

It is obvious that, for any �, the pendulum has two equilibrium positions: z = 0 and z = �.
According to Theorem 3, these periodic motions are also observed for small �.

We will investigate the stability of the equilibrium. From formulae (4.1), we have

Hence,

and the equilibrium is stable.
When � = 0, the pendulum allows of a uniform 2�-periodic rotation z = nt, n ∈ N. We shall assume that z = nt + .

Then, for , we obtain the equation

According to Theorem 3, in the case of small � �= 0, 2�-periodic oscillations, which are specified by the formulae
(5.3):

(5.5)

are superimposed on the uniform rotations.
We will investigate the stability of the motions (5.5). Of all the functions (4.1),

is the only function which is not identically equal to zero.
When n = 1, we calculate that a0 = −� < 0. This means that, when � ≥ 0 (� < 0), a rotation close to a uniform rotation

with n = 1 is stable (unstable).
When n > 1, we have a0 = 0. We introduce the notation

and calculate

The stability of the motions (5.3) when n > 1 follows from this; it is obvious that the property of stability is independent
of the sign of �.



744 V.N. Tkhai / Journal of Applied Mathematics and Mechanics 70 (2006) 734–753

6. The birth of a cycle in the neighbourhood of the SPM of an “almost” resonance system

It is also possible to give the following interpretation to the results in Sections 2–4. The one parameter family
of systems (1.3) (� is the parameter) is considered. When � = 0, system (1.3) allows of a family of SPMs in whose
neighbourhood cycles occur in the general situation when � �= 0. The stability of these cycles depends on the sign of
�.

The result in Section 5 is also treated in a similar manner. Only, here, we have an equilibrium state which belongs
to a fixed set instead of a family of SPMs.

A cycle can also occur in a system in the neighbourhood of a “support” SPM, if the latter is “almost” resonance
motion. Here, it should be borne in mind that system (1.1) depends on the parameter � and allows of a family of SPMs
with respect to the parameter � and, when � = 0, the SPM is a resonance motion. Then, when � �= 0, we have an isolated,
“almost” resonance SPM. In the neighbourhood of the “support” (null) SPM, we have an “almost” resonance system.

A closely related problem has been considered earlier for an autonomous system.48,49

When considering a cycle in an “almost” resonance system, we will use the general assertion concerning the
existence of periodic motions in a reversible system with a small parameter (Ref. 49, Theorem 1) and also the normal
form. Note that the resulting normal form enables one to carry out a “complete” classification of the phase portraits
for a system in a “general position” which requires a separate treatment. The classification is well known in the case
of Hamiltonian systems.50

In the neighbourhood of a chosen SPM, the system also has the form of (1.1) with the sole refinement that U(0, 0,
t) = V(0, 0, t) = 0. This means that the system has a null SPM.

We shall assume that the characteristic exponents ±
 are pure imaginary and that the system is an “almost” resonance
system.

(6.1)

The normal form then depends on � and, also, on the form of the resonance. We will use a normalizing transformation
which is continuous with respect to �.51

After these preliminary remarks, we will now analyse particular cases of resonance.

1◦. P > 4. In this case, the normal form in the first non-linear approximation is independent of the order of the resonance.
In the complex-conjugate variables � and �̄, we have

(C11 is a real number). We now make the substitution

Then,

Finally, we write

in radius - angle variables.
We now change the scale and apply a well-known result (Ref. 49, Theorem 1). The cycle is then determined from

the amplitude equation

and represents a SPM. This SPM is isolated and only exists if �C11(0) > 0.
Hence, when P > 4, a cycle always exists and moreover, it is unique. The period of this SPM is equal to 2�P.
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2◦. P = 4 (fourth-order resonance). We will write the normal form in the complex-conjugate variables w and w̄ (Ref.
46)

(C11 and C−1,3 are constants). The corresponding amplitude equation then has the form

(6.2)

(Henceforth, a zero superscript indicates that the value of a coefficient is taken when � = 0). When |C0
11| �= |C0

−1,3|,
the system always allows of cycles. The cycles represent isolated SPMs with period 8�.

It is clear from Eq. (6.2) that, in the neighbourhood of a null support SPM (|C0
11| > |C0

−1,3|)46 when � �= 0, 8 cycles

occur, 4 cycles occur in the opposite case when �C11(0) > 0, and the remaining four cycles when �C0
11 < 0.

3◦. P = 3 (third-order resonance). In the case being considered, the normal form has a simple form46

and the amplitude equation is

The support SPM is unstable46 and 6 cycles with period 6� (3 cycles when � > 0 and 3 cycles when � < 0) occur in the
neighbourhood of the support SPM.

4◦. P = 2, |q| is an odd number (parametric resonance). In this case, the support SPM, as a rule, is unstable by the first
approximation. The normal form in the variables w and w̄ has the form

(Cjk are real constants). We now change to radius - angle variables

(6.3)

The existence of SPM in the form of a cycle is then revealed using the amplitude equation

(6.4)

(sin 20 = 0). From this, we obtain

The plus sign corresponds to a cycle 0 = 0, � and the minus sign to a cycle 0 = �/2, 3�/4.
It is seen that two cycles occur for each sign of � and that these cycles of SPM have a period 4�.
A special feature of the resonance being considered is the existence of an asymmetric cycle. We now set up the

system of amplitude equations48 for system (6.3). Eq. (6.4) will be one of these equations. The other equation is

(6.5)
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We express � in terms of this equation and substitute it into Eq. (6.4). We obtain the quadratic equation

(6.6)

from which we determine one or two values of cos 20 which satisfy the condition |cos 20| < 1.
Hence, when the obvious conditions which are imposed on the coefficients of Eqs. (6.5) and (6.6) are satisfied, the

system has 4 or 8 asymmetric cycles with period 4�.

5◦. P = 1 (principal resonance). The normal form in the case of this resonance is distinguished from the case when
P = 2 by the non-linear terms and has the form

In radius - angle variables, we then obtain

We now set up the system of amplitude equations

(6.7)

The solutions of system (6.7), when sin 0 = 0, determine the symmetric cycles

It is obvious that, when C0+ �= C0
−1,2, the cycle is unique. The cycle represents SPM with period 2�.

The simple roots of system (6.7), for which sin 0 �= 0, determine the asymmetric cycles

(6.8)

There are four such cycles and the period of the motion along them is equal to 2�.
We now summarize the conclusions of Section 6.

Theorem 4. Cycles representing SPMs with period 2P� always occur in the almost resonance system (6.1). Asym-
metric cycles also occur together with a symmetric cycle in the case of parametric resonance (P = 2) and the principal
resonance (P = 1).

7. Possible scenarios for the birth of cycles

1◦. The equilibrium of an autonomous system is stable in the linear approximation and the system is an “almost”
resonance system. When � �= 0 (periodic perturbations), symmetric cycles occur and asymmetric cycles also occur
in the case when P = 1, 2 (Theorem 4).

2◦. The same holds for the neighbourhood of the SPMs of a periodic system (Theorem 4).
3◦. An autonomous system has a unique equilibrium which belongs to a fixed set. When � �= 0, a unique cycle occurs

(Theorem 3).
4◦. A generating autonomous system has a family of SPMs for which the period T(h) depends on the parameter h.

When � �= 0, a unique cycle occurs if the perturbations are 2�-periodic, dT(2�) �= 0.
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Fig. 2.

We now present a diagram which reflects the birth of cycles in a system with a parameter �. When � = 0, the system
is autonomous and has a family of SPMs with period T(h) (which is picked out in Fig. 2 by the segment on the r0 axis).
The condition dT(2�) �= 0 is satisfied at point A. For small � > 0, cycles occur which depend on the parameter �. For
small �, the characteristic exponents ±� are close to zero. On the branch corresponding to the stable reference SPM
(after the segment of the curve shown by a dashed line), the open circles represent resonance situations, and cycles
(with period 2P�) occur here. The successively spaced resonance points represent the monotonic dependence of ±�
on �.

8. A special version of the photogravitational three-body problem (the Sitnikov problem)

We will now consider the motion of a particle P along a fixed straight line OZ in a gravitationally repulsive field
of two identical attracting and simultaneously radiating bodies S1 and S2 (a double star). The main bodies S1 and S2
rotate with respect to one another in elliptic orbits in the OXY plane and the OZ line passes through their centre of mass
O perpendicular to the OXY plane (Fig. 3).

The motion of the particle P is described by the periodic second-order equation22

(8.1)

(e and v are the eccentricity and the true anomaly in the problem of two bodies S1 and S2, Q is the reduction coefficient,
which characterizes the radiating action of the double star on the particle (Q ≤ 1), z is the distance of the particle from
the centre of mass and a prime denotes a derivative with respect to v). Eq. (8.1) is reversible in the sense that it is
invariant with respect to the substitutions (z, z′, v) → (±z, ∓z′, −v), and it has two fixed sets.

Note that the equation of motion of the three-body photogravitational problem52,53 allows of an integral manifold
in which x = y = 0 and the z coordinate varies in accordance with Eq. (8.1).22

When Q = 1, the main bodies do not radiate. In this problem, Sitnikov2 proved the existence of oscillatory motions,
and Alekseyev found the “possibility of using the methods of symbolic dynamics”4 and solved the Chazy problem of
the final motions in the four-body problem.4,54 On the other hand, Eq. (8.1) is an example of the simplest non-integrable
system which is rich in content in all respects. Hence, numerous papers (for a brief review, see Ref. 8) are devoted

Fig. 3.
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to an investigation of Eq. (8.1) and they continue to appear.17–22. Problem (8.1) when Q = 1 is called the Sitnikov
problem.8,17–21

The purpose of the discussion below is to investigate all possible SPMs in problem (8.1) with an arbitrary physically
admissible parameter Q (Q ≤ 1). The theory developed in Sections 2–6 is systematically applied here.

1◦. The circular problem (e = 0). In this case, we have a conservative system with one degree of freedom and an energy
integral

It means that, when Q > 0 (the Newton attraction force exceeds the light pressure), the particle executes oscillations
along the OZ line, which are symmetrical about the point O if h < 0, and, when h ≥ 0, all the motions of the particle
are departing motions as when t → + ∞.

In the case when Q < 0, we have h > 0. We obtain three types of motions:

1) the particle arrives from the point z = +∞(−∞), approaches a finite distance to the point O and departs to +∞(−∞),
2) the particle moves from +∞(−∞) to −∞(+∞),
3) the particle enters point O when t → + ∞(−∞).

We will now describe an ensemble of particles Pj which are arranged on the OZ axis. Since the reduction coefficient
Q in the three-body photogravitational problem is not solely dependent on the radiating properties of the bodies S1
and S2 but, also, on the characteristics of an individual particle Pj, then, in the ensemble being considered, a particle
Pj moves in accordance with Eq. (8.1) and each with its own reduction coefficient Qj. The energy of a particle hj is
determined in a random manner by the initial conditions. As a result, an ensemble of chaotically moving particles is
“observed”. Such an effect is generated by particles, several of which oscillate, each of them having their own frequency,
some others move in the OXY plane and others move away from this plane, each of them doing so non-uniformly at an
individual rate.

2◦. The weakly elliptic problem (0 < e � 1). Here, we will use the conclusions of Theorems 1 and 2 in the analysis of
the symmetric periodic orbits of the particle.

First, we make an important observation. The reversible system (8.1) has two fixed sets. It can therefore allow of
motions which are symmetrical with respect to the set M1 = {z, ż, v : ż = 0, sin v = 0} or to the set M2 = {ż, v : z =
0, sin v = 0}. Some of these motions can be simultaneously symmetrical with respect to both sets, that is, they are
doubly symmetrical motions (see also Ref 20). Note that the family of oscillations in the circular problem consists of
doubly symmetrical motions.

We calculate the period of the oscillatory motions when e = 0

(z0 is the amplitude of the oscillations). We put

Then,
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We now make the replacement

As a result, we have the following final expression

(8.2)

which gives the explicit relation T = T(Q, k).
The period T is a function of the amplitude of the oscillations (in the parameter k). It is clear from expression (8.2)

that dT/dk > 0 always. Moreover, T(Q, k) → ∞ when k → √
2/2. In accordance with Theorem 1 when e > 0, two SPMs

with period 2�q arise in the weakly elliptic case for each q ∈ N. One of them is symmetrical with respect to the set M1
and the other is symmetrical with respect to the set M2.

Theorem 5. In the weakly elliptic Sitnikov problem (8.1) with Q > 0, two SPMs with period 2�q arise for each
q ∈ N. When v = 0, in the first motion we have z(0) = z0 �= 0, z′(0) = 0 (Fig. 3, case a) and, in the second motion,
z(0) = 0, z′(0) = z′

0 �= 0 (Fig. 3, case b).

3◦. Stability of the equilibrium position. Eq. (8.1) allows of an obvious, null equilibrium. In the initial three-body
photogravitational problem,52,53 this solution corresponds to an internal collinear libration point.

Eq. (8.1) reduces to the simple form

(8.3)

(r is the distance between the bodies S1 and S2 in the elliptic motion and a dot denotes differentiation with respect to
time t, m is the total mass of the bodies and f is the gravitational constant). The instability of the equilibrium position
when Q < 0 follows from this.

When Q > 0, the equilibrium is stable in the weakly elliptic problem if there is no parametric resonance. The
frequency of the oscillations in the circular problem is equal to � = 2

√
2Q, and this means that, when Q = 1/32, the

frequency becomes the resonance frequency (2� = 1).
In the neighbourhood of the equilibrium, we obtain a Mathieu equation of the form

Parametric resonance therefore leads to instability.
We will now investigate the stability of the equilibrium position in the elliptic problem. To do this, we construct a

solution of Cauchy’s problem in the interval v ∈ [0, 2�] and, using formula (1.6), calculate the characteristic exponents.
We then apply the theorem on stability in non-degenerate situations.43. As a result, the stability (instability) domains
and the resonance curves are distinguished in the (e, Q) plane (Fig. 4).

4◦. SPMs in the elliptic problem. Theorem 5 guarantees the existence of two SPMs of period 2�q(q ∈ N) for small
e. The condition 2

√
2Qq ≥ 1, which determines the lower bound of Q for the occurrence of SPMs, follows from

expression (8.2). So, there are only SPMs of period 2� in the problem when Q ≥ 1/8.

The periodic motions found in the weakly elliptic problem can be continued numerically for finite values of the
eccentricity e. However, it is preferable here to use the method in Ref. 34 which enables one to construct all the SPMs
of the problem. When account is taken of the existence of two fixed sets in Eq. (8.1), use of the above method leads to
the construction of two families of SPMs from the parameter e for each fixed q ∈ N.

Note that the method in Ref. 34 not only makes it possible to continue the SPMs which have been determined in
Theorem 5, but also to find all the other SPMs.
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Fig. 4.

The necessary and sufficient conditions for the existence of the first family of SPMs have the form

(8.4)

For the second family, we obtain

(8.5)

When z0 = z′
0 = 0, we have a trivial SPM (an equilibrium).

We now consider the process of constructing a motion which satisfies conditions (8.4). We subdivide the interval
[0, a] of the z axis by the points z0k (k = 0, 1, . . ., l): 0 = z00 < z01 < . . . < z0l = a and, from each point z0k when v = 0,
we let out a trajectory with a velocity z′

k(0) = 0. Then, when v = �q, the ends of these trajectories belong to the curve
Γ , and the points Γk = {zk(�k), z′

k(�k)} ⊂ Γ, Γ0 = {0, 0}.
If A is the point of intersection of the curve Γ with the z axis, we have z′

k(�k)z′
j(�k) < 0 at the points Γ k and

Γ j adjacent to it. This condition establishes the fact that an SPM exists. The accuracy with which the SPM can be
constructed is determined by the method chosen to solve Cauchy’s problem. The choice of the points z0k is made using
the golden section-method. The scheme for investigating the stability of an SPM has been described in Section 1.

The results of the investigation of SPMs with period 2� are presented for Q = 1 (the Sitnikov problem). The initial
points z0 (see Fig. 3, case a) for the motions (8.4), which form a family � with respect to the parameter e are given in
Fig. 5. This family consists of three subfamilies �1, �2, �3. The subfamily �1 arises when e = 0 from the 2�-periodic
SPM of the circular problem when e > 0 and is stable as long as e < e∗ < 0.55. There is subsequently a change in the
stability and, when e > e∗, the SPMs of the subfamily �1 become unstable. When e = 0, a subfamily �2 arises from
the SPMs with period 2�/3, and, when e > 0, it consists of unstable SPMs. A change in the stability of the SPMs in �2
also occurs at the point e = e∗. The third subfamily, �3, is created from the local SPMs when e = e∗, and it is unstable.

The law of a change in stability for a fixed value of e holds in the curves of the family �. When e < e∗, the sign of
the stability in the curves �1 and �2 is different (the family �1 is stable and �2 is unstable), when e = e∗ the subfamily
�3 arises, and, when e > e∗, we have that the family �1 is unstable and the family �2 is stable.

The question of the double symmetry of the SPMs constructed is of interest. It has been discussed in Ref. 20 from
the point of view of the existence of logically possible SPMs. The phase curves for SPMs in the half-plane z′ ≥ 0 are
presented in Fig. 6 for characteristic values of e. The subfamilies �1 and �2 consist of SPMs which are symmetrical
solely about the z axis (of the fixed set M1) while the SPMs in the curve �3 are symmetrical both about the z axis and
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Fig. 5.

Fig. 6.

the z′ axis (of the sets M1 and M2). This is not surprising as Theorem 1 guarantees the uniqueness of the continuation
of the subfamilies �1 and �2 which do not have branch points. As far as the subfamily �3 is concerned, it arises when
e = e∗ �= 0 from a double symmetrical SPMs and remains as such.

It is interesting to compare the results for the family � with the results for the family �* which satisfies conditions
(8.5). These results were also obtained but omitted here due to lack of space.

The problem of investigating all the SPMs with period 2�q (q > 1) is interesting relation to possible bifurcations
and also in relation to unstable SPMs, which have initial points close to the initial points for oscillatory motions.2

Finally, a study of all the SPMs in the photogravitational version of the Sitnikov problem (0 < Q < 1) is of interest.
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